

Advanced Internal Combustion Engines Workstream Conclusions & Consensus Roadmap

September 2013

Neville Jackson

Chief Technology & Innovation Officer

Ricardo plc

Low Carbon Vehicle Event 2013
Millbrook Proving Ground

The UK's Premier Low Carbon Vehicle (Technology Showcasing & Networking) Event

Contents

- Introduction & Background
- Team Members, Objectives
- Challenges & Opportunities
- Technology Options & Consensus Roadmap
- Key Messages, Recommendations & Future Plan

Advanced Internal Combustion Engines vital for vehicle CO₂ are a key feature of the consensus roadmap & core UK focus area

Advanced high
efficiency Internal
Combustion Engines
key feature of roadmap
& UK focus area

- Most effective short term route to CO₂ reduction.
- UK has all the elements of the supply chain from research to mass production.
- Companies with a fundamental expertise in combustion technology, active fuels and lubricants companies and expertise in motorsport engine technology.
- Opportunity is to grow Tier1 supplier capability & presence

UK is a leader in the manufacture of Advanced Internal Combustion Engines – High Value Exports in passenger car & off-highway products

Internal Combustion Engines important for Economy

- UK produces ~ 2.7* million engines/year
- Associated value to UK is ~£7bn
- Majority of engines made in UK exported

UK ICE Characterised by:

Leading University/Industry Partnerships

- Around £36m over 3 yrs invested in ICE research
- Internationally leading University research teams
 - Turbomachinery and boosting
 - Advanced clean/high efficiency combustion

Product Development & Manufacture

- High efficiency downsized boosted engines
- Leading construction & off-highway engines
- World beating high performance engines

Ford 1.0I Ecoboost

BMW-PSA 1.6-litre turbo 12C M838T

McLaren

3 of 8 International Award winning engines in 2013 made in UK Award winning engines also a key feature of Off-Highway sector

Source: PSR Enginlink Database

Broad multi-sector team created to develop Internal Combustion Engine Technology Strategy with an objective to grow UK value & capability

 Objective. To create a UK Internal Combustion Engine strategy that defines a consensus industry view on what needs to be done to grow the UK capability in technology, infrastructure and market development

The Team & Group Leaders*				
Neville Jackson	Ricardo (Chair)	David Skipp*	Ford (Co-ordinator)	
Richard Banks*	BMW	Steve Richardson	*Jaguar LandRover	
John Turton	Nissan	Steve Faulkner	Caterpillar	
Jamie Turner	Lotus	Brian Gush	Bentley	
Martyn Hawley	SAIC	Colin Garner	Loughborough Univ.	
Colin Loud	JCB	Pierre French	Cummins Turbo Tech	
Dave Yuill	BIS	Richard Hall	Schaeffler	
Marco Warth	Mahle	John Laughlin	Tech. Strategy Board	
John Kell	UKTI	lan Bacon	SMMT	

- Focus on Passenger Car, Commercial Vehicle and Off Road Equipment
- Canvas & Consolidate data & points of view from key stakeholders
- Input from survey of Academic Research Capability/Activities and TSB Automotive Capability Study
- Develop ICE and related Technology Roadmap to highlight key future focus areas
- Outline likely Mobilityqtransition pathways comparing ICE with other technologies
- Propose ICE opportunities/enablers for wealth generation & CO₂ reduction via investment & training

UK Innovation Chain has key strengths but we need to coordinate & focus R&D agendas & build capable supply chains in added value systems

- automotive council UK
- UK has significant design & manufacturing capability, largely dominated by assembly
 Many of the high added value, fuelling, control and electrical systems imported from overseas
- UK strong academic & vehicle OEM R&D capability, less homogenously strong R&D capability in supply chain
- Support Structures for TRL 1-5 but many technologies fail to reach TRL 6-9:

Future key technologies identified to improve ICE efficiency supported by enabling technologies – Focus areas defined via impact & UK benefit

 Future technologies categorised into improved thermal efficiency, improved system efficiency, enabling technologies and carbon reduction for fuels/production

hermal Efficiency	System Efficiency	Enabling Technologies	Carbon Reduction
Reduced Comb. Heat Losses	Downsizing & Boosting	Charge Thermal Management	1 st Gen Biofuels (Crop Based)
Fuel Injection Optimisation (CI)	Lower Mech. Friction	Flexible/Fast Response Boost	2 nd Gen Biofuels (Waste Re-use)
High Efficiency Combustion	Thermoelectric Generators	Thermal Energy Storage	3 rd Gen Biofuels (Biotech)
Improved boost Eff/operating range	Electrification or Energy Recovery	Flexible Valve Trains	CNG/Biogas
Mechanical/Elec Turbocompound	Variable Power Ancillaries	Pm & NOx Emissions Control	Liquified Natural Gas
Organic Rankine Cycles	Low Inertia Fast Warmup	Advanced Control Approaches	Re-cycling & Re- manufacturing
Adv. Regen or	Downspeeding	Advanced/New	

Potential UK R&D focus areas identified via UK TSB capability study, Impact & likely UK benefits

Materials

Further detailed analysis required to define priorities

Split Cycle

Many pathways to improve pass car powertrains – Example: downsizing/ electrification/heat recovery combination could achieve 30 g/km CO₂ **Boosted Engine** Downsized 70% v Todav Downsized 40% v Todav

-34%

2025

-41%

2030

-45%

2035

ICE/System efficiency improvements & low carbon fuels could deliver ~ 30 g/km CO₂ by 2040 ICE based systems competitive with EV as on life cycle carbon basis

-21%

2020

-9%

2015

8

2045

automotive

council

-48%

2040

0

2005

Vehicle Weight Reduction:

Base

2010

ICE roadmap defines role & phasing for future technologies to meet future regulatory and commercial needs – similarities between On & Off Highway

The ICE will be a core feature of low CO₂ propulsion systems for decades Collaborative investment in supply chains could deliver £2b/year to UK

Key Messages:

- ICE research, development & manufacture is a UK strength, providing significant benefit to the UK economy
- Detailed analysis shows that the Internal Combustion Engine, operating on low carbon fuels, with varying degrees of electrification, is the most logical route to future on & off highway regulatory & commercial needs
- Increased global demand for low carbon propulsion systems offers an opportunity for the UK to grow a supply chain for added value systems through investment in skills, capabilities & advanced manufacturing technology

Recommendations:

- Improved coordination of R&D agendas via an Auto Council advisory group to connect our academic & industrial base in propulsion systems & research to manufacture, supporting high value low CO₂ propulsion technologies
- Stable, long-term policy required by Government to encourage collaboration and focused investment across fuel supply and ICE/vehicle industries, and to bring these new low carbon sustainable fuels to market
- Support development of advanced manufacturing supply chains to deliver added value low carbon systems
 for the next generation of on & off highway powerplants rather than purchasing these from outside the UK

Core Proposition:

An investment of £1bn over 10 years in a co-ordinated collaborative program is recommended to grow a
 demand led supply chain for low carbon added value automotive propulsion systems establishing global
 leadership for UK 'research to manufacture' capability & skills. This could deliver £2b/year to the UK